
Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

97

Function Growth Rates

12 Function Growth Rates
12.1 Introduction

We have set up an approach for determining the amount of work done by an algorithm based on
formulating functions expressing counts of basic operations in terms of the size of the input to the
algorithm. By concentrating on basic operations, our analysis framework introduces a certain amount of
imprecision. For example, an algorithm whose complexity is C(n) = 2n-3 may actually run slower than
an algorithm whose complexity is C(n) = 12n+5, because uncounted operations in the former may slow
its actual execution time. Nevertheless, both of these algorithms would surely run much more quickly
than an algorithm whose complexity is C(n) = n2 as n becomes large; the running times of the first two
algorithms are much closer to each other than they are to the third algorithm.

In comparing the efficiency of algorithms, we are more interested in big differences that manifest
themselves as the size of the input becomes large than we are in small differences in running times
that vary by a constant or a multiple for inputs of all sizes. The theory of the asymptotic growth rate of
functions, also called the order of growth of functions, provides a basis for partitioning algorithms into
groups with equivalent efficiency, as we will now see.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

98

Function Growth Rates

12.2 Definitions and Notation

Our goal is to classify functions into groups such that all the functions in a group grow no faster than
some reference function for the group. Informally, O(f) (read big-oh of f)is the set of functions that
grows no faster than f (n) (that is, those that grow more slowly than f (n) or at the same rate as f (n)).

Formally, let f (n) and g(n) be functions from the natural numbers to the non-negative real numbers.

Definition: The function g is in the set O(f), denoted g ∈ O(f), if there exist some positive
constant c and non-negative integer n0 such that

g(n) ≤ c ∙ f (n) for all n ≥ n0

In other words, g is in O(f) if at some point g(n) is never greater than some multiple of f (n). The
following are examples.

8n+5 ∈ O(n)
8n+5 ∈ O(n2)

6n2+23n-14 ∈ O(4n2-18n+65)
nk ∈ O(np) for all k ≤ p

log n ∈ O(n)
2n ∈ O(n!)

It is important to realize the huge difference between the growth rates of functions in sets with different
orders of growth. The table below shows the values of functions in sets with increasing growth rates.
Blank spots in the table indicate absolutely enormous numbers. (The function lg n is log2 n.)

n lg n n n lg n n2 n3 2n n!

10 3.3 10 33 100 1000 1024 3,628,800

100 6.6 100 660 10,000 1,000,000 1.3 ∙ 1030 9.3 ∙ 10157

1000 10 1000 10,000 1,000,000 109

10,000 13 10,000 130,000 108 1012

100,000 17 100,000 1,700,000 1010 1015

1,000,000 20 1,000,000 2 ∙ 107 1012 1018

Table 1: Values of Functions of Different Orders of Growth

As this table suggests, algorithms whose complexity is characterized by functions in the first several
columns are quite efficient, and we can expect them to complete execution quickly for even quite large
inputs. Algorithms whose complexity is characterized by functions in the last several columns must do
enormous amounts of work even for fairly small inputs, and for large inputs, they simply will not be
able to finish execution before the end of time, even on the fastest possible computers.

http://bookboon.com/

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

99

Function Growth Rates

12.3 Establishing the Order of Growth of a Function

When confronted with the question of whether some function g is in O(f), we can use the definition
directly to decide, but there is an easier way embodied in the following theorem.

Theorem: g ∈ O(f) if limn->∞ g(n)/f (n) = c, for c ≥ 0.

For example, to show that 3n2+2n-1 ∈ O(n2) we need to consider limn->∞ (3n2+2n-1)/n2:

limn->∞ (3n2+2n-1)/n2 = limn->∞3n2/n2 + limn->∞2n/n2 - limn->∞ 1/n2

 = limn->∞ 3 + limn->∞ 2/n - limn->∞ 1/n2 = 3

Because this limit is not infinite, 3n2+2n-1 ∈ O(n2).

Another theorem that is very useful in solving limit problems is L’HÔpital’s Rule:

Theorem: If limn->∞ f (n) = limn->∞ g(n) = ∞, and the derivatives f ’ and g’ exist, then limn->∞
f (n)/g(n) = limn->∞ f ’(n)/g’(n).

To illustrate the use of L’HÔpital’s Rule, lets determine whether n2 ∈ O(n lg n). First note that limn->∞ n2

= limn->∞ n lg n = ∞, and the first derivatives of both of these functions exist, so L’HÔpital’s Rule applies.

limn->∞ n2/(n lg n) = limn->∞ n/(lg n)
= (using L’HÔpital’s Rule) limn->∞ 1/((lg e)/n)

= limn->∞ n/(lg e) = ∞

Because this limit is infinite, we know that n2 ∉ O(n lg n), that is, we know that n2 grows faster than n
lg n. It is easy to use L’HÔpital’s Rule to show that n lg n ∈ O(n2), however.

12.4 Applying Orders of Growth

In our discussion of complexity we determined that for sequential search, W(n) = (n+1)/2, B(n) = 1,
and A(n) = (3n+ 1)/4. Clearly, these functions are all in O(n); we say that sequential search is a linear
algorithm. Similarly, we determined that for the maximum-finding algorithm, C(n) = n-1. This function
is also in O(n), so this is also a linear algorithm. We will soon see algorithms whose complexity is in
sets with higher orders of growth.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

100

Function Growth Rates

12.5 Summary and Conclusion

Our algorithm analysis approach has three steps:

1. Choose a measure for the size of the input.
2. Choose a basic operation to count.
3. Determine whether the algorithm has different complexity for various inputs of size n; if so,

then derive measures for B(n), W(n), and A(n) as functions of the size of the input; if not,
then derive a measure for C(n) as a function of the size of the input.

We now add a fourth step:

4. Determine the order of growth of the complexity measures for the algorithm.

Usually this last step is quite simple. In evaluating an algorithm, we are often most interested in the order
of its worst case complexity or (if there is no worst case) basic complexity because this places an upper
bound on the behavior of the algorithm: though it may perform better, we know it cannot perform worse
than this. Sometimes we are also interested in average case complexity, though the assumptions under
which such analyses are done may sometimes not be very plausible.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

101

Function Growth Rates

12.6 Review Questions

1. Why is the order of growth of functions pertinent to algorithm analysis?
2. If a function g is in O(f), can f also be in O(g)?
3. What function is lg n?
4. Why is L’HÔpital’s Rule important for analyzing algorithms?

12.7 Exercises

1. Some algorithms have complexity lg lg n (that is lg (lg n)). Make a table like Table 1 above
showing the rate of growth of lg lg n as n becomes larger.

2. Show that n3+n-4 ∉ O(2n2-3).
3. Show that lg 2n ∈ O(n).
4. Show that n lg n ∈ O(n2).
5. Show that if a, b ≥ 0 and a ≤ b, then na ∈ O(nb).

12.8 Review Question Answers

1. The order of growth of functions is pertinent to algorithm analysis because the amount of
work done by algorithms whose complexity functions have the same order of growth is not
very different, while the amount of work done by algorithms whose complexity functions
have different orders of growth is dramatically different. The theory of the order of growth
of functions provides a theoretical framework for determining significant differences in the
amount of work done by algorithms.

2. If g and f grow at the same rate, then g ∈ O(f) because g grows no faster than f, and f ∈
O(g) because f grows no faster than g. For any functions f and g with the same order of
growth, f ∈ O(g) and g ∈ O(f).

3. The function lg n is log 2 n. that is, the logarithm base two of n.
4. L’HÔpital’s Rule is important for analyzing algorithms because if makes it easier to compute

the limit of the ratio of two functions of n as n goes to infinity, which is the basis for
determining their comparative growth rates. For example, it is not clear what the value
of limn->∞(lg n)2/n is. Using L’HÔpital’s Rule twice to differentiate the numerators and
denominators, we get

limn->∞(lg n)2/n = limn->∞(2 lg e ∙ lg n)/n = limn->∞(2 (lg e)2)/n = 0.

This shows that (lg n)2 ∈ O(n).

http://bookboon.com/

