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12 Function Growth Rates
12.1 Introduction

We have set up an approach for determining the amount of work done by an algorithm based on 
formulating functions expressing counts of basic operations in terms of the size of the input to the 
algorithm. By concentrating on basic operations, our analysis framework introduces a certain amount of 
imprecision. For example, an algorithm whose complexity is C(n) = 2n-3 may actually run slower than 
an algorithm whose complexity is C(n) = 12n+5, because uncounted operations in the former may slow 
its actual execution time. Nevertheless, both of these algorithms would surely run much more quickly 
than an algorithm whose complexity is C(n) = n2 as n becomes large; the running times of the first two 
algorithms are much closer to each other than they are to the third algorithm.

In comparing the efficiency of algorithms, we are more interested in big differences that manifest 
themselves as the size of the input becomes large than we are in small differences in running times 
that vary by a constant or a multiple for inputs of all sizes. The theory of the asymptotic growth rate of 
functions, also called the order of growth of functions, provides a basis for partitioning algorithms into 
groups with equivalent efficiency, as we will now see.
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12.2 Definitions and Notation

Our goal is to classify functions into groups such that all the functions in a group grow no faster than 
some reference function for the group. Informally, O(f ) (read big-oh of f)is the set of functions that 
grows no faster than f (n) (that is, those that grow more slowly than f (n) or at the same rate as f (n)).

Formally, let f (n) and g(n) be functions from the natural numbers to the non-negative real numbers.

Definition: The function g is in the set O(f ), denoted g ∈ O(f ), if there exist some positive 
constant c and non-negative integer n0 such that

g(n) ≤ c ∙ f (n) for all n ≥ n0

In other words, g is in O(f ) if at some point g(n) is never greater than some multiple of f (n). The 
following are examples.

8n+5 ∈ O(n)
8n+5 ∈ O(n2)

6n2+23n-14 ∈ O(4n2-18n+65)
nk ∈ O(np) for all k ≤ p

log n ∈ O(n)
2n ∈ O(n!)

It is important to realize the huge difference between the growth rates of functions in sets with different 
orders of growth. The table below shows the values of functions in sets with increasing growth rates. 
Blank spots in the table indicate absolutely enormous numbers. (The function lg n is log2 n.)

n lg n n n lg n n2 n3 2n n!

10 3.3 10 33 100 1000 1024 3,628,800

100 6.6 100 660 10,000 1,000,000 1.3 ∙ 1030 9.3 ∙ 10157

1000 10 1000 10,000 1,000,000 109

10,000 13 10,000 130,000 108 1012

100,000 17 100,000 1,700,000 1010 1015

1,000,000 20 1,000,000 2 ∙ 107 1012 1018

Table 1: Values of Functions of Different Orders of Growth

As this table suggests, algorithms whose complexity is characterized by functions in the first several 
columns are quite efficient, and we can expect them to complete execution quickly for even quite large 
inputs. Algorithms whose complexity is characterized by functions in the last several columns must do 
enormous amounts of work even for fairly small inputs, and for large inputs, they simply will not be 
able to finish execution before the end of time, even on the fastest possible computers.
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12.3 Establishing the Order of Growth of a Function

When confronted with the question of whether some function g is in O(f ), we can use the definition 
directly to decide, but there is an easier way embodied in the following theorem.

Theorem: g ∈ O(f ) if limn->∞ g(n)/f (n) = c, for c ≥ 0.

For example, to show that 3n2+2n-1 ∈ O(n2) we need to consider limn->∞ (3n2+2n-1)/n2:

limn->∞ (3n2+2n-1)/n2 = limn->∞3n2/n2 + limn->∞2n/n2 - limn->∞ 1/n2

       = limn->∞ 3 + limn->∞ 2/n - limn->∞ 1/n2 = 3

Because this limit is not infinite, 3n2+2n-1 ∈ O(n2).

Another theorem that is very useful in solving limit problems is L’HÔpital’s Rule:

Theorem: If limn->∞ f (n) = limn->∞ g(n) = ∞, and the derivatives f ’ and g’ exist, then limn->∞ 
f (n)/g(n) = limn->∞ f ’(n)/g’(n).

To illustrate the use of L’HÔpital’s Rule, lets determine whether n2 ∈ O(n lg n). First note that limn->∞ n2 

= limn->∞ n lg n = ∞, and the first derivatives of both of these functions exist, so L’HÔpital’s Rule applies.

limn->∞ n2/(n lg n) = limn->∞ n/(lg n)
= (using L’HÔpital’s Rule) limn->∞ 1/((lg e)/n)

= limn->∞ n/(lg e) = ∞

Because this limit is infinite, we know that n2 ∉ O(n lg n), that is, we know that n2 grows faster than n 
lg n. It is easy to use L’HÔpital’s Rule to show that n lg n ∈ O(n2 ), however.

12.4 Applying Orders of Growth

In our discussion of complexity we determined that for sequential search, W(n) = (n+1)/2, B(n) = 1, 
and A(n) = (3n+ 1)/4. Clearly, these functions are all in O(n); we say that sequential search is a linear 
algorithm. Similarly, we determined that for the maximum-finding algorithm, C(n) = n-1. This function 
is also in O(n), so this is also a linear algorithm. We will soon see algorithms whose complexity is in 
sets with higher orders of growth.
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12.5 Summary and Conclusion

Our algorithm analysis approach has three steps:

1. Choose a measure for the size of the input.
2. Choose a basic operation to count.
3. Determine whether the algorithm has different complexity for various inputs of size n; if so, 

then derive measures for B(n), W(n), and A(n) as functions of the size of the input; if not, 
then derive a measure for C(n) as a function of the size of the input.

We now add a fourth step:

4. Determine the order of growth of the complexity measures for the algorithm.

Usually this last step is quite simple. In evaluating an algorithm, we are often most interested in the order 
of its worst case complexity or (if there is no worst case) basic complexity because this places an upper 
bound on the behavior of the algorithm: though it may perform better, we know it cannot perform worse 
than this. Sometimes we are also interested in average case complexity, though the assumptions under 
which such analyses are done may sometimes not be very plausible.
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12.6 Review Questions

1. Why is the order of growth of functions pertinent to algorithm analysis?
2. If a function g is in O(f ), can f also be in O(g)?
3. What function is lg n?
4. Why is L’HÔpital’s Rule important for analyzing algorithms?

12.7 Exercises

1. Some algorithms have complexity lg lg n (that is lg (lg n)). Make a table like Table 1 above 
showing the rate of growth of lg lg n as n becomes larger.

2. Show that n3+n-4 ∉ O(2n2-3).
3. Show that lg 2n ∈ O(n).
4. Show that n lg n ∈ O(n2).
5. Show that if a, b ≥ 0 and a ≤ b, then na ∈ O(nb).

12.8 Review Question Answers

1. The order of growth of functions is pertinent to algorithm analysis because the amount of 
work done by algorithms whose complexity functions have the same order of growth is not 
very different, while the amount of work done by algorithms whose complexity functions 
have different orders of growth is dramatically different. The theory of the order of growth 
of functions provides a theoretical framework for determining significant differences in the 
amount of work done by algorithms.

2. If g and f grow at the same rate, then g ∈ O(f ) because g grows no faster than f, and f ∈ 
O(g) because f grows no faster than g. For any functions f and g with the same order of 
growth, f ∈ O(g) and g ∈ O(f ).

3. The function lg n is log 2 n. that is, the logarithm base two of n. 
4. L’HÔpital’s Rule is important for analyzing algorithms because if makes it easier to compute 

the limit of the ratio of two functions of n as n goes to infinity, which is the basis for 
determining their comparative growth rates. For example, it is not clear what the value 
of limn->∞(lg n)2/n is. Using L’HÔpital’s Rule twice to differentiate the numerators and 
denominators, we get

limn->∞(lg n)2/n = limn->∞(2 lg e ∙ lg n)/n = limn->∞(2 (lg e)2)/n = 0.

This shows that (lg n)2 ∈ O(n).
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